A numerical model for electromagnetic scattering from sea ice
نویسندگان
چکیده
A numerical model for scattering from sea ice based on the finite difference time domain (FDTD) technique is presented. The sea ice medium is modeled as consisting of randomly located spherical brine scatterers with a specified fractional volume, and the medium is modeled both with and without a randomly rough boundary to study the relative effects of volume and surface scattering. A Monte Carlo simulation is used to obtain numerical results for incoherent backscattered normalized radar cross sections (RCS’s) in the frequency range from 3 to 9 GHz and for incidence angles from 10 to 50 from normal incidence. The computational intensity of the study necessitates an effective permittivity approach to modeling brine pocket effects and a nonuniform grid for small scale surface roughness. However, comparisons with analytical models show that these approximations should introduce errors no larger than approximately 3 dB. Incoherent cross sections backscattered from sea ice models with a smooth surface show only a small dependence on incidence angle, while results for sea ice models with slightly rough surfaces are found to be dominated by surface scattering at incidence angles less than 30 and by scattering from brine pockets at angles greater than 30 . As the surface roughness increases, surface scattering tends to dominate at all incidence angles. Initial comparisons with measurements taken with artificially grown sea ice are made, and even the simplified sea ice model used in the FDTD simulation is found to provide reasonable agreement with measured data trends. The numerical model developed can be useful in interpreting measurements when parameters such as surface roughness and scatterer distributions lie outside ranges where analytical models are valid.
منابع مشابه
Polarimetric signatures of sea ice 1. Theoretical model
Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related...
متن کاملPolarimetric signatures of sea ice Part I: Theoretical model
Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for po-larimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are relate...
متن کاملElectromagnetic Wave Scattering from Rough Boundaries Interfacing Inhomogeneous Media and Application to Snow-Covered Sea Ice
In this study a new analytical formulation for electromagnetic wave scattering from rough boundaries interfacing inhomogeneous media is presented based on the first-order approximation of the small perturbation method. First, we considered a scattering problem for a single rough boundary embedded in a piecewise continuously layered medium. As a key step, we introduced auxiliary wave propagation...
متن کاملSea Surfaces Scattering by Multi-Order Small-Slope Approximation: a Monte-Carlo and Analytical Comparison
L-band electromagnetic scattering from two-dimensional random rough sea surfaces are calculated by first- and second-order Small-Slope Approximation (SSA1, 2) methods. Both analytical and numerical computations are utilized to calculate incoherent normalized radar cross-section (NRCS) in mono- and bi-static cases. For evaluating inverse Fourier transform, inverse fast Fourier transform (IFFT) i...
متن کاملLarge-scale Inverse Modeling of Microwave Backscatter from Sea Ice
.'..I AbstructMany forward electromagnetic scattering models have been proposed to predict the normalized radar cross section, &', from sea ice characteristics. In this paper, we apply scatterometer data to large scale inverse modeling. Given the limited resolution, we adopt a simple geometric optics forward scattering model to analyze surface and volume scattering contributions to observed Ku-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 38 شماره
صفحات -
تاریخ انتشار 2000